A Symmetry Preserving Singular Value Decomposition

نویسندگان

  • Mili I. Shah
  • Danny C. Sorensen
چکیده

A reduced order representation of a large data set is often realized through a principal component analysis based upon a singular value decomposition (SVD) of the data. The left singular vectors of a truncated SVD provide the reduced basis. In several applications such as facial analysis and protein dynamics, structural symmetry is inherent in the data. Typically, reflective or rotational symmetry is expected to be present in these applications. In protein dynamics, determining this symmetry allows one to provide SVD major modes of motion that best describe the symmetric movements of the protein. In face detection, symmetry in the SVD allows for more efficient compression algorithms. Here we present a method to compute the plane of reflective symmetry or the axis of rotational symmetry of a large set of points. Moreover, we develop a symmetry preserving singular value decomposition (SPSVD) that best approximates the given set while respecting the symmetry. Interesting subproblems arise in the presence of noisy data or in situations where most, but not all, of the structure is symmetric. An important part of the determination of the axis of rotational symmetry or the plane of reflective symmetry is an iterative reweighting scheme. This scheme is rapidly convergent in practice and seems to be very effective in ignoring outliers (points that do not respect the symmetry).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Best Symmetric Low Rank Approximation via the Symmetry Preserving Singular Value Decomposition

The symmetry preserving singular value decomposition (SPSVD) produces the best symmetric (low rank) approximation to a set of data. These symmetric approximations are characterized via an invariance under the action of a symmetry group on the set of data. The symmetry groups of interest consist of all the non-spherical symmetry groups in three dimensions. This set includes the rotational, refle...

متن کامل

Symmetric Eigenfaces

Abstract. Over the years, mathematicians and computer scientists have produced an extensive body of work in the area of facial analysis. Several facial analysis algorithms have been based on mathematical concepts such as the singular value decomposition (SVD). The SVD is generalized in this paper to take advantage of the mirror symmetry that is inherent in faces, thereby developing a new facial...

متن کامل

Privacy Preserving Clustering on Distorted data

In designing various security and privacy related data mining applications, privacy preserving has become a major concern. Protecting sensitive or confidential information in data mining is an important long term goal. An increased data disclosure risks may encounter when it is released. Various data distortion techniques are widely used to protect sensitive data; these approaches protect data ...

متن کامل

Best Nonspherical Symmetric Low Rank Approximation

Abstract. The symmetry preserving singular value decomposition (SPSVD) produces the best symmetric (low rank) approximation to a set of data. These symmetric approximations are characterized via an invariance under the action of a symmetry group on the set of data. The symmetry groups of interest consist of all the non-spherical symmetry groups in three dimensions. This set includes the rotatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2006